An evolutionary multi-objective optimization algorithm for portfolio selection problem
نویسندگان
چکیده
Cultural algorithms (CAs) are one of the metaheuristics which can be adapted in order to work in multiobjective optimization environments. On the other hand, portfolio selection problem (PSP) is a wellknow problem in literature. However, only a few articles have applied evolutionary multi-objective (EMO) algorithms to these problems and articles presenting CAs applied to the PSP have not been found. In this article, we present a bi-objective cultural algorithm (BOCA) which has been applied to the PSP, and obtaining acceptable results in comparison with other well-known EMO algorithms from the literature. The considered criteria of the problem are risk minimization and profit maximization. The different solutions obtained with the BOCA have been compared using max-delta-area metric.
منابع مشابه
Using Genetic Algorithm in Solving Stochastic Programming for Multi-Objective Portfolio Selection in Tehran Stock Exchange
Investor decision making has always been affected by two factors: risk and returns. Considering risk, the investor expects an acceptable return on the investment decision horizon. Accordingly, defining goals and constraints for each investor can have unique prioritization. This paper develops several approaches to multi criteria portfolio optimization. The maximization of stock returns, the pow...
متن کاملOptimization of Bank Portfolio Investment Decision Considering Resistive Economy
Increasing economy’s resistance against the menace of sanctions, various risks, shocks, and internal and external threats are one of the main national policies which can be implemented through bank investments. Investment project selection is a complex and multi-criteria decision-making process that is influenced by multiple and often some conflicting objectives. This paper studies portfolio inve...
متن کاملComparison of particle swarm optimization and tabu search algorithms for portfolio selection problem
Using Metaheuristics models and Evolutionary Algorithms for solving portfolio problem has been considered in recent years.In this study, by using particles swarm optimization and tabu search algorithms we optimized two-sided risk measures . A standard exact penalty function transforms the considered portfolio selection problem into an equivalent unconstrained minimization problem. And in final...
متن کاملA nonlinear multi objective model for the product portfolio optimization: An integer programming
Optimization of the product portfolio has been recognized as a critical problem in industry, management, economy and so on. It aims at the selection of an optimal mix of the products to offer in the target market. As a probability function, reliability is an essential objective of the problem which linear models often fail to evaluate it. Here, we develop a multiobjective integer nonlinear cons...
متن کاملTask Scheduling Using Particle Swarm Optimization Algorithm with a Selection Guide and a Measure of Uniformity for Computational Grids
In this paper, we proposed an algorithm for solving the problem of task scheduling using particle swarm optimization algorithm, with changes in the Selection and removing the guide and also using the technique to get away from the bad, to move away from local extreme and diversity. Scheduling algorithms play an important role in grid computing, parallel tasks Scheduling and sending them to ...
متن کاملA Fuzzy Goal Programming Model for Efficient Portfolio Selection.
This paper considers a multi-objective portfolio selection problem imposed by gaining of portfolio, divided yield and risk control in an ambiguous investment environment, in which the return and risk are characterized by probabilistic numbers. Based on the theory of possibility, a new multi-objective portfolio optimization model with gaining of portfolio, divided yield and risk control is propo...
متن کامل